The Cotriple Resolution of Differential Graded Algebras

نویسنده

  • BENOIT FRESSE
چکیده

We consider the cotriple resolution of algebras over operads in differential graded modules. We focus, to be more precise, on the example of algebras over the differential graded Barratt-Eccles operad, and on the example of commutative alegbras. We prove that the geometric realization of the cotriple resolution (in the sense of model categories) gives a cofibrant resolution functor on these categories of differential graded algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic Homologies of Crossed Modules of Algebras

The Hochschild and (cotriple) cyclic homologies of crossed modules of (notnecessarily-unital) associative algebras are investigated. Wodzicki’s excision theorem is extended for inclusion crossed modules in the category of crossed modules of algebras. The cyclic and cotriple cyclic homologies of crossed modules are compared in terms of long exact homology sequence, generalising the relative cycl...

متن کامل

Differential Graded Schemes I: Perfect Resolving Algebras

We introduce perfect resolving algebras and study their fundamental properties. These algebras are basic for our theory of differential graded schemes, as they give rise to affine differential graded schemes. We also introduce étale morphisms. The purpose for studying these, is that they will be used to glue differential graded schemes from affine ones with respect to an étale topology.

متن کامل

Disconnected Rational Homotopy Theory

We construct two algebraic versions of homotopy theory of rational disconnected topological spaces, one based on differential graded commutative associative algebras and the other one on complete differential graded Lie algebras. As an application of the developed technology we obtain results on the structure of Maurer-Cartan spaces of complete differential graded Lie algebras.

متن کامل

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

An Infinitesimal-birational Duality through Differential Operators

The structure of filtered algebras of Grothendieck’s differential operators of truncated polynomials in one variable and graded Poisson algebras of their principal symbols is explicitly determined. A related infinitesimalbirational duality realized by a Springer type resolution of singularities and the Fourier transformation is presented. This algebro-geometrical duality is quantized in appropr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015